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Abstract- With today requirement, video processing is challenging task with its rapid growth in multimedia 

technology. Videos are highly prone to distortions which are caused due to various factors. The discrete nature of 

photons which introduce Poisson noise is one of the major problems seen in videos. A noisy video has not only an 

unpleasant visual effect, but it also restricts the user to extract the true content. The aim of video denoising is to 

improve the perceptual quality by removing the noise, while preserving the signal features as much as possible. In 

this paper, the aim is to propose an efficient Poisson denoising model with both high computational efficiency and 

recovery quality. There exists a high correlation among the neighboring frames of a video, since the motions among 

such frames are small. Hence, video denoising techniques can be considered as an extension of image denoising 

techniques, by providing temporal filtering taking into account the correlation between the neighboring frames. The 

research paper propose a directional denoising scheme to estimate Linear Minimum Mean Square Error(LMMSE) 

for the noiseless and missing samples under the same framework of optimal estimation. The local statistics is 

adaptively calculated to guide the estimation process. For each noisy sample, the proposed work computes multiple 

estimates of it along with different directions and then fuses those directional estimates for a more accurate output. 

Compared with the conventional schemes, proposed method preserves the frame image edge structures. Thus 

combines the advantage of directional denoising for individual frame and frame reproduced by frame stitching to 

achieve better quality video with low computational complexity. 
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1. INTRODUCTION 

Preserving features of images or videos [1,4] while 

removing various types of noises such as Gaussian 

noise [1], [3], [5], impulse noise [6], mixed noise [7], 

and Poisson noise [8], [9] had been a challenge to 

video processing community in many real world 

image and video processing applications. The 

detailed review of various techniques and their 

qualitative and quantitative comparisons are included 

in [1]. For any application, the image or video has to 

be preprocessed and then used for further processing. 

Many of the literature show that the image or video 

used in applications are assumed to be clean. But in 

real, they are prone to various artifacts. The crucial 

subject of poisson noise cannot be ignored and had 

been a challenge to researchers. The task of image 

denoising with Poisson noise is particularly 

interesting in vast real applications [10]–[12]. Due to 

the physical mechanism, the strength of the Poisson 

noise depends on the image intensity and is therefore 

not additive, alluding to the fact that Poisson 

denoising is generally quite different from the usual 

case of the additive noise. Till now, a variety of 

Poisson denoising algorithms has been proposed in 

[8], [9], [13], and [14]. Rough classification shows 

two major contributions: 1) with variance stabilizing 

transformation (VST) and 2) without VST. The 

approaches in the first class preprocess the input data 

by applying a nonlinear VST such as Anscombe [15], 

[16] or Fisz [17] which removed the signal-

dependency property of the Poisson noise. The noise 

variance is estimated and then the transformed data is 

made to have a Gaussian nature noise which can be 

further removed using filters. In most of the literature 

wavelets with hard and soft thresholding have been 

used to remove the unwanted Gaussian noise [5]. 

Finally, the estimate of the underlying noise-free 

image is obtained by applying an inverse VST [18]–

[21] to the denoised transformed data. Using the 

well-known BM3D algorithm [22] for Gaussian noise 
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removal, the resulting Poisson denoising algorithm 

leads to state-of-the-art performance. However, the 

VST is accurate only when the measured pixels have 

relative high intensity. In order to deal with the above 

deficiency of the VST operation, several authors 

[23]–[25] have investigated denoising strategies 

without VST, which rely directly on the statistics of 

the Poisson noise. Salmon et al. [23] [26] [27] used a 

direct approach to achieves state-of-the-art results for 

images suffering from a high noise level. There are 

two versions involved in this method: the nonlocal 

PCA and the nonlocal sparse PCA (NLSPCA). 

Similarly, to overcome the deficiency of VST, the 

data fidelity term originated from Poisson noise 

statistics is adopted in [8], [25], and [28]. Some other 

work done by researchers included in [29], where the 

author developed a robust noise parameter estimation 

technique for Poisson corrupted images by 

combining variance stabilization and AWGN-based 

noise variance estimation. Poisson distribution 

characteristics to estimate the photon count from 

relative illumination data, under simple hypotheses 

was given in [30]. That allowed them to use variance-

stabilizing methods on standard digital photographs 

[31] presented a unified framework to deal with 

video denoising problems by adopting a two-steps 

process, namely the video epitome and sparse coding. 

 

2. OUR CONTRIBUTIONS 

 

Lei Zhang, Xin Li, and David Zhang [32] in their 

work had suggested an efficient directional denoising 

technique to remove poisson noise and preserved 

edges during interpolation. The process of directional 

denoising and interpolation were simultaneously 

applied to reduce computational complexity. The 

optimal estimation was modeled to estimate noiseless 

and missing samples. For each noisy sample, they 

computed multiple estimates of it along different 

directions and then fuse those directional estimates 

for a more accurate output. 

Many frame stitching techniques are used by 

researchers in the literature. This research paper 

propose a novel frame stitching technique using a 

3x3 window from a current frame to locate in 7x7 

neighborhood in the next frame, assuming that there 

is little deflection of the object features in the next 

frame with respect to the current frame. The main 

idea behind stitching two consecutive frames is to 

eliminate poisson noise of the current frame by 

reproducing the current frame from the next frame. 

Results showed high peak signal to noise (psnr) ratio 

when directional estimate using LMMSE is made on 

the reproduced frame. Therefore our contribution is 

reproducing current from the successive or next 

frame and applying directional denoising. 

 

3. FRAME REPRODUCTION 

To achieve greater block matching accuracy, the 

block size of the source (current frame) frame was 

taken to be 3x3. Considering camera movement to be 

little in the destination frame (successive or next 

frame) the source block is searched in a 

neighborhood of 7x7 window around the central 

block with same spatial coordinates as that of the 

source block. The successive frame is padded with 

border elements so as to create a neighborhood of 

7x7 around the border elements. Figure 1 below 

shows both the source and the destination blocks 

from current and the next frame respectively. 

 

   

 (m,n)  

   

 

 

       

 1 2 3 4 5  

 6 7 8 9 10  

 11 12 (m,n) 14 15  

 16 17 18 19 20  

 21 22 23 24 25  

       

Figure 1- The source and the destination blocks 

 

The source block is compared with all the 25 

destination blocks situated around the 25 elements. 

The distance error is calculated as   

E = avg (abs(Bs-Ds)) 

Where Bs represents all the nine elements of source 

block and Ds represents all the nine elements of the 

destination block. Individual elements are subtracted 

and the mean value is calculated. Thus we have 25 

values corresponding to 25 blocks in the destination. 

Further the block index corresponding to the 

minimum distance is found. Here no thresholding is 

used, simply the block from destination whose 

distance is at least out of 25 blocks is considered. It 

may happen that more than one block have same 

distance value and that to be the minimum. The 
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following conditions are applied for the best 

matching block. 

1. If only one block is found to be having the 

minimum value, its index is stored. 

2. If more than one block have the same minimum 

distance and block 13 (central block) is one of 

them, then block 13 is taken into account and 

rest are neglected. 

3. If block 13 is not present, then the immediate 

neighbors 7, 8, 9, 12, 14, 17, 18 1nd 19 are 

searched in sequence. For example, if block 7 is 

found to have minimum distance, it is taken into 

account. Any one is considered and that to in 

sequence. 

4. If none of the immediate block has minimum 

distance then remaining blocks 1, 2, 3, 4, 5, 6, 

10, 11, 15, 16, 20, 21, 22, 23, 24 and 25 are 

searched again in sequence. This will result in 

motion error so the index is accompanied by an 

infinity value is stored. This will be corrected 

later when the camera alignment is calculated. 

For example if 11, 22 and 25 are the blocks with 

same minimum distance, then 11 is stored with 

infinity, whereas 22 and 25 are stored for future 

correction. 

 

Now the total count for each index is calculated 

except for the block 13. This is done because block 

13 has the same spatial coordinates as that of the 

source block. The block with the maximum count 

will give us the camera motion. For example if block 

17 has the maximum count then the camera is 

deflected 215
0
 with respected to the current frame. 

Now the step 4 above index is corrected. At step 4, 

index 11 was stored, but as per camera movement, 

now it is corrected and replaced by index 22, since it 

is in the vicinity of 17. 

The above frame reproduction is done after 

converting the frame from RGB color space to gray 

scale. Once the blocks are localized, the new frame is 

reproduced form the destination frame pixel value 

and finally all the components (R, G and B) are 

acquired from the same spatial coordinated of the 

destination frame. Figure 2 shows the current frame 

and the next successive frame and Figure 2: Shows 

the current frame with the reproduced frame. 

The Current frame The Successive frame

 
Figure 3: The current frame and the successive 

frame 

The Current frame The Reproduced frame

 
Figure 4: The current frame and the frame 

reproduced by block matching technique 

 

Directional Denoising 

The noisy frame In containing poisson noise can be 

represented as In=I+n; Where, I is the noiseless 

frame, n is the poisson noise. 

Consider a noisy pixel In(m,n), the goal is to estimate 

the noiseless value I’(m,n) of it using it neighbors 

Iv(m,n). We had utilized the technique mentioned in 

[32] to estimate I’(m,n) nearer to original pixel 

I(m,n). Optimal estimation technique such as the 

LMMSE [33] is used to find the estimate I’(m,n) of 

the original pixel I(m,n). If a 3×3 window around 

I’(m,n) is used, Svwill be a 9×1 variable vector and 

its variance matrix var(Sv) is a 9×9 matrix. The 

inverse of the 9×9 matrix var(Sv) will cost much 

computation. So, we divide the estimation of into 

several sub-problems, each of which yields a 
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directional estimate of I’(m,n), and then fuse those 

directional estimates into a more robust one. 

Refer to Figure 4, we partition the nine noisy samples 

within the 3×3 window centered on (m, n) into three 

groups along different directions: horizontal/vertical, 

diagonal and the noisy sample Iv(m,n). The red circle 

represents the noiseless pixel to be estimated and the 

blue circles represent the available noisy 

measurements. Each of the first two groups has four 

elements and the last group has one member only. 

With the three groups, we are able to calculate three 

directional estimates of I’(m,n). The three estimates 

can then be adaptively fused to obtain a more robust 

and accurate estimation of I’ (m,n). 

 

 

 

 

 

 

Figure 5 - Partition of the nine measurements into 3 

groups to estimate the unknown noiseless sample. 

 

Considering four neighbors of I’(m,n) above, then the 

LMMSE can be calculated by finding mean, variance 

and covariance for all the three groups separately. 

The above mean, variance and covariance are 

calculated by considering a training window around 

the 3x3 matrix under consideration as suggested in 

[32]. The training window centered on the 3x3 

window considered is of 5x5. The directional 

estimates are then fused to find the actual estimate. 

The brief estimation can be found in [32]. Here we 

had not taken into account the weight vectors they 

had calculated for interpolation. 

 

4. METHODOLOGY& RESULTS 

1. Read the video. 

2. Store the frames in memory. 

3. Select any two consecutive frames. 

4. LMMSE using directional denoising to 

current frame. 

5. Frame stitching 

6. LMMSE using directional denoising to 

reproduced frame. 

 
Figure 6 – Results of Directional denoising to R, G 

and B components of current frame. First column 

represents original R, G and B frames. Second 

column represents frames with poisson noise and the 

third column is the result after denoising. 

 
Figure 7 – First frame is the RGB frame with 

poisson noise and the second frame is the result of 

directional denoising. Second frame is the combined 

view of all components. 

 
Figure 8 – Results of Directional denoising to R, G 

and B components of reproduced frame. First column 

represent original R, G and B frames. Second column 
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represent frames with Poisson noise and the third 

column is the result after denoising. 

 
Figure 9 – First frame is the original RGB frame and 

the second frame is the result of directional 

denoising. Second frame is the combined view of all 

reproduced R, G and B components. 

The results can be better understood from signal to 

noise ratios. 

 

Table 1- Comparison of SNR value when denoising 

is applied to the components of original frame and 

the reproduced frame with same parameters. 

 

Sr. 

No. 
Frames 

SNR using 

Current 

Frame 

SNR using 

Reproduced 

Frame 

1 R 25.5981 37.1343 

2 G 26.0527 38.2425 

3 B 24.8511 36.5725 

 

5. CONCLUSIONS 

Figure 6 and 8 clearly shows the difference in visual 

context. The reproduced frame when applied for 

directional denoising produces much better results 

than applying denoising to the frame itself. The SNR 

values for all the components independently as seen 

from table 1 are remarkable as compared to the SNR 

value obtained when denoising is applied to the 

frame itself. The edges as seen in figure 8 are 

preserved with small amount of loss. The 

computational complexity of the denoising and the 

frame reproduction is low. The color perception has 

been degraded to some extent but as far as poisson 

noise is concerned it is worth. Also if video is 

concerned it may not be an issue when high frame 

rate. Further work will be focused on enhancing the 

image quality with better SNR values. Also we have 

not used minimum threshold value in block 

matching, which may have represented an incorrect 

block from the successive frame to the source block. 

The block matching algorithm can be modified to 

improve the performance. 
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